Investigations of the EPR Parameters and Defect Structures of Two Types of Trigonal Cr³⁺ Centers in CsMgCl₃, CsMgBr₃ and CsCdBr₃ Crystals

Lv He^a, Xiao-Xuan Wu^{a,b,c}, Wen-Chen Zheng^{a,c}, and Yang Mei^a

^a Department of Material Science, Sichuan University, Chengdu 610064, People's Republic of China

b Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, People's Republic of China

Reprint requests to Prof. W.-C.Z.; Fax: +86-28-85416050; E-mail: zhengwc1@163.com

Z. Naturforsch. **60a**, 823 – 826 (2005); received June 7, 2005

The EPR g factors g_{\parallel} , g_{\perp} and zero-field splitting D of trigonal Cr^{3+} - M^+ ($M^+ = Li^+$, Cu^+ , Na^+) and Cr^{3+} - V_B - M^{3+} ($M^{3+} = Cr^{3+}$, In^{3+} , Sc^{3+} , Y^{3+} , Lu^{3+} ; V_B denotes the B^{2+} vacancy) centers in some $CsBX_3$ (B = Mg, Cd; X = Cl, Br) crystals are calculated from high-order perturbation formulas based on the two-spin-orbit coupling parameter model of the $3d^3$ ion in trigonal symmetry. From the calculations, these EPR parameters are reasonably explained and the local lattice distortions caused by the charge compensators M^+ or V_B are estimated. The results are discussed.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-field Theory; Defect Structure; Cr^{3+} ; CsMgCl₃; CsMgBr₃; CsCdBr₃.

1. Introduction

quasi-one-dimensional halides CsBX₃ (B = Mg, Cd; X = Cl, Br) adopt the hexagonal structure identical to that of CsNiCl₃ [1,2]. The most prominent structural feature of these lattices is a system of linear arrays of $(BX_6)^{4-}$ octahedra sharing opposite faces. These arrays form infinite chairs along the crystallographic C-axis. The point symmetry at a B^{2+} site is D_{3d} and the surrounding X^- octahedron is slightly elongated along the trigonal C-axis. When a Cr³⁺ ion replaces a B²⁺ ion in CsMgCl₃, CsMgBr₃ and CsCdBr3 crystals, EPR measurements did show that there are two types of trigonal $(C_{3\nu})$ Cr³⁺ centers caused by charge compensation, and their EPR parameters (g factors g_{\parallel}, g_{\perp} and zero-field splitting D) were reported [3]. One type of the trigonal Cr^{3+} center is assigned to Cr^{3+} at a B^{2+} site associated with a monovalent M^+ (M^+ = Li^+ , Cu^+ or Na^+) at a nearest-neighboring B^{2+} site along the C-axis (so it is called Cr^{3+} - M^+ center), and another type of the trigonal Cr^{3+} center is Cr^{3+} - V_B - M^{3+} (M^{3+} = Cr^{3+} , In^{3+} , Sc^{3+} , Y^{3+} or Lu^{3+}) centers, where the Cr^{3+} ion is associated with a B^{2+} vacancy V_B at the nearest-neighboring B^{2+} site and a trivalent impurity M^{3+} at the next-neighboring B^{2+} site along the C-axis

(see Fig. 1 in [3]). Since the effective charge of M⁺ (or V_B) at the B²⁺ site is negative, it can be expected that the Cr³⁺ ion shifts towards the M⁺ (or V_B) by Δx_1 , and the three X⁻ ions in the plane between Cr³⁺ and M⁺ (or V_B) shift away from M⁺ (or V_B) by Δx_2 along the M⁺-X⁻ direction, because of the electrostatic interactions. No explanations for these EPR parameters have been given. Since the EPR parameters of a paramagnetic impurity center are sensitive to its local structure, some useful information on the defect structure of the impurity center can be obtained by studying the EPR data [4-7]. In this paper we calculate the EPR parameters g_{\parallel}, g_{\perp} and D for the two types of trigonal Cr³⁺ centers in these CsBX₃ crystals. From the calculations, the displacements Δx_1 and Δx_2 and hence the defect structures of these Cr³⁺ centers are estimated.

2. Calculations

In CsBX₃:Cr³⁺ crystals, since the spin-orbit (SO) coupling parameter ζ_p^0 ($\approx 587~\text{cm}^{-1}$ for Cl⁻ and 2460 cm⁻¹ for Br⁻ [8]) of the ligand ion X⁻ is greater than that ($\zeta_d^0 \approx 273~\text{cm}^{-1}$ [9]) of the central metal ion Cr³⁺, we should apply the high-order perturba-

^c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

tion formulas of EPR parameters based on the two-SO-parameter model [10, 11], where not only the contribution to EPR parameters due to the SO coupling

parameter of the central $3d^n$ ion, but also the contribution due to the SO coupling parameter of ligand are included. These formulas are [11]:

$$\begin{split} D &= (2/9)\zeta'^2v(1/D_1^2 - 1/D_3^2) - \sqrt{2}\zeta\zeta'v'(2/3D_1D_4 + 1/D_2D_3 + 1/3D_3D_4 + 1/D_2D_4 + 1/$$

with

$$\zeta = N_{t}(\zeta_{d}^{0} + \lambda_{t}^{2}\zeta_{p}^{0}/2), \quad \zeta' = (N_{t}N_{e})^{1/2}(\zeta_{d}^{0} - \lambda_{t}\lambda_{e}\zeta_{p}^{0}/2),
k = N_{t}[1 - 2\lambda_{t}S_{dp}(t_{2g}) + \lambda_{t}^{2}/2], \quad k' = (N_{t}N_{e})^{1/2}[1 - \lambda_{t}S_{dp}(t_{2g}) - \lambda_{e}S_{dp}(e_{g}) - \lambda_{t}\lambda_{e}/2)],$$
(2)

in which g_s (≈ 2.0023) is the g factor of a free electron. D_i (i=1-5) are the zero-order energy denominators defined in [12]. They can be calculated from the cubic field parameter Dq and Racah parameters B and C. V and V' are the trigonal field parameters. N_{γ} ($\gamma=\mathrm{t_g}$ or $\mathrm{e_g}$) is the normalization coefficient and λ_{γ} is the orbital mixing coefficient in the one-electron basis function. They can be estimated from the normalization relationship [10, 11]

$$N_{\gamma}[1 - 2\lambda_{\gamma}S_{\rm dp}(\gamma) + (\lambda_{\gamma})^{2}] = 1 \tag{3}$$

and the approximate relationship [10, 11]

$$f_r = 1/2(B/B_0 + C/C_0) \approx N_{\gamma}^2 [1 + \lambda_{\gamma}^2 S_{\rm dp}^2(\gamma) - 2\lambda_r S_{\rm dp}(\gamma)],$$
(4)

in which B_0 and C_0 are the Racah parameters of the $3d^n$ ion in free state. For a free Cr^{3+} ion we have $B_0\approx 1030~cm^{-1}$ and $C_0\approx 3850~cm^{-1}$ [9]. The group overlap integral $S_{\rm dp}(\gamma)$ can be calculated from the Slater-type SCF functions [13,14] and the metal-ligand distance R_0 in the studied system. From $R_0\approx 2.496$, 2.662 and 2.770 Å [2] for CsMgCl₃, CsMgBr₃, and CsCdBr₃, respectively, we obtain the group overlap integrals for Cr^{3+} in the three crystals. They are shown in Table 1.

Table 1. The group overlap integrals, spin-orbit coupling parameters and orbital reduction factors for Cr³⁺ in CsMgCl₃, CsMgBr₃, and CsCdBr₃ crystals.

	$S_{\rm dp}({\rm e_g})$	$S_{\rm dp}(t_{\rm 2g})$		ζ',	k	k'
			(cm^{-1})	(cm^{-1})		
CsMgCl ₃ :Cr ³⁺	0.0582	0.0189	282.5	138.9	0.8779	0.6201
CsMgBr ₃ :Cr ³⁺	0.0531	0.0161	524.4	-119.9	0.8707	0.5993
CsCdBr ₃ :Cr ³⁺	0.0418	0.0118	521.5	-116.4	0.8717	0.6048

From the optical spectra of CsMgCl₃:Cr³⁺ [15], we have

$$B \approx 500 \text{ cm}^{-1}$$
, $C \approx 2625 \text{ cm}^{-1}$, $Dq \approx 1360 \text{ cm}^{-1}$. (5)

For CsBBr₃ crystals, from the method in [10], we obtain for CsMgBr₃:Cr³⁺,

$$B \approx 480 \text{ cm}^{-1}$$
, $C \approx 2520 \text{ cm}^{-1}$, $Dq \approx 1250 \text{ cm}^{-1}$, (6)
and for CsCdBr₃:Cr³⁺,

$$B \approx 480 \text{ cm}^{-1}$$
, $C \approx 2520 \text{ cm}^{-1}$, $Dq \approx 1200 \text{ cm}^{-1}$. (7)

Thus, from (3) and (4), N_{γ} and λ_{γ} can be calculated. From the parameters ζ_d^0 and ζ_p^0 given above, the parameters in (2) for Cr^{3+} in the three $CsBX_3$ crystals can be obtained. They are also shown in Table 1.

The trigonal field parameters v and v' for a C_{3v} center can be given in the superposition model [16] as

$$v \approx \sum_{i=1}^{2} \left[\frac{9}{7} \bar{A}_{2}(R_{0}) \left(\frac{R_{0}}{R_{i}} \right)^{t_{2}} (3\cos^{2}\theta_{i} - 1) + \frac{20}{21} \bar{A}_{4}(R_{0}) \left(\frac{R_{0}}{R_{i}} \right)^{t_{4}} (35\cos^{4}\theta_{i} - 20\cos^{2}\theta_{i} + 3) + \frac{20\sqrt{2}}{3} \bar{A}_{4}(R_{0}) \left(\frac{R_{0}}{R_{i}} \right)^{t_{4}} \sin^{3}\theta_{i} \cos\theta_{i} \right],$$

Center	$\Delta x_1 (\mathring{A})^a$	$\Delta x_2 (\mathring{A})^b$	811		g_{\perp}		$D (\mathrm{cm}^{-1})$	
			Cal.	Expt. [3]	Cal.	Expt. [3]	Cal.	Expt. [3]
CsMgCl ₃ :								
Cr^{3+} - Li^+	0.08	0.270	1.985	1.991(4)	1.985	1.991(4)	0.0087	0.0088(2)
-Cu ⁺	0.08	0.264	1.985	1.987(3)	1.985	1.987(3)	0.0272	0.0272(8)
-Na ⁺	0.08	0.246	1.985	1.991(3)	1.985	1.991(3)	0.086	0.086(1)
Cr^{3+} - V_B - Cr^{3+}	0.10	0.196	1.986	1.984	1.984	1.984	0.221	0.221
-In ³⁺	0.10	0.196	1.986	1.984(4)	1.984	1.983(4)	0.221	0.220(1)
$-Sc^{3+}$	0.10	0.196	1.986	1.984(2)	1.984	1.983(2)	0.221	0.221(1)
-Y ³⁺	0.10	0.196	1.986	1.984(2)	1.984	1.983(2)	0.221	0.222(1)
-Lu ³⁺	0.10	0.196	1.986	1.984(2)	1.984	1.983(2)	0.221	0.224(1)
CsMgBr ₃ :								
Cr ³⁺ -Li ⁺	0.05	0.233	2.016	2.012(6)	2.016	2.012(6)	0.0174	0.0171(5)
Cr^{3+} - V_B - Cr^{3+}	0.10	0.261	2.016	2.011	2.016	2.011	0.228	0.228
CsCdBr ₃ :								
Cr ³⁺ -Li ⁺	0.09	0.206	2.016	2.014(6)	2.017	2.014(6)	0.0330	0.0329(8)
-Cu ⁺	0.09	0.209	2.016	2.014(3)	2.017	2.016(3)	0.426	0.0426(8)
-Na ⁺	0.09	0.221	2.016	2.014(3)	2.016	2.014(3)	0.0962	0.0964(8)
Cr^{3+} - V_B - Cr^{3+}	0.11	0.249	2.016	2.010(4)	2.016	2.010(4)	0.252	0.251
$-In^{3+}$	0.11	0.249	2.016	2.015(4)	2.016	2.010(4)	0.252	0.246(4)

Table 2. EPR parameters $(g_{\parallel}, g_{\perp} \text{ and } D)$ and the displacements Δx_1 and Δx_2 for two types of trigonal Cr^{3+} centers in CsMgCl₃, CsMgBr₃, and CsCdBr₃ crystals.

$$v' \approx \sum_{i=1}^{2} \left[\frac{3\sqrt{2}}{7} \bar{A}_{2}(R_{0}) \left(\frac{R_{0}}{R_{i}} \right)^{t_{2}} (3\cos^{2}\theta_{i} - 1) + \frac{5\sqrt{2}}{21} \bar{A}_{4}(R_{0}) \left(\frac{R_{0}}{R_{i}} \right)^{t_{4}} (35\cos^{4}\theta_{i} - 30\cos^{2}\theta_{i} + 3) + \frac{10}{3} \bar{A}_{4}(R_{0}) \left(\frac{R_{0}}{R_{i}} \right)^{t_{4}} \sin^{3}\theta_{i} \cos\theta_{i} \right],$$
(8)

where the power-law exponents are $t_2 \approx 3$ and $t_4 \approx 5$ [16–18]. $\bar{A}_2(R_0)$ and $\bar{A}_4(R_0)$ are the intrinsic parameters with the reference distance R_0 . For $3d^n$ ions in an octahedron, we have $\bar{A}_4(R_0) = 3/4Dq$ [17–19] and $\bar{A}_2(R_0) \approx (9 \sim 12)\bar{A}_4(R_0)$ [18–20]. We take the mean value $\bar{A}_2(R_0) \approx 10.5\bar{A}_4(R_0)$ here. R_i (i = 1 or 2) and θ_i are, respectively, the impurity-ligand distance and the angle between the directions of R_i and C_3 -axis. They can be calculated from the structural data R_0 and θ_0 in the host crystals, and the displacements Δx_1 and Δx_2 . The angles θ_0 are 51.7°, 52.4°, and 52.65° [2] in CsMgCl₃, CsMgBr₃, and CsCdBr₃, respectively. Thus, from the above formulas and parameters, we obtain the displacements Δx_1 and Δx_2 (see Table 2) by fitting the calculated EPR parameters to the observed values for the Cr³⁺-M⁺ and Cr³⁺-V_B-M³⁺ centers in the three CsBX3 crystals. The calculated EPR parameters are compared with the observed values in Table 2.

3. Discussion

a) From the above studies one can find that the EPR parameters g_{\parallel} , g_{\perp} and D for the trigonal Cr^{3+} - M^+ and Cr^{3+} - V_B - M^{3+} centers in CsMgCl₃, CsMgBr₃ and CsCdBr₃ crystals can be reasonably explained by considering suitable displacements Δx_1 and Δx_2 (see Table 2). The displacement directions of Δx_1 and Δx_2 are consistent with the expectation based on the electrostatic interactions. So, the defect structures for both types of Cr^{3+} centers can be regarded as reasonable.

b) For the Cr^{3+} - V_B - M^{3+} centers, the displacements Δx_1 of Cr^{3+} and Δx_2 of O^{2-} are mainly caused by the effective charge of the nearest-neighboring V_B . They are not sensitive to the size and nature of M^{3+} , because M^{3+} is in the next-neighboring site along the C_3 -axis. So the fact, that the EPR parameters and hence the displacements Δx_1 and Δx_2 for various Cr^{3+} - V_B - M^{3+} centers in the same crystal are almost the same (see Table 2), can be understood.

^a The displacement of Cr³⁺ towards M⁺ (or V_B). ^b The displacement of the three O²⁻ far away from M⁺ (or V_B).

- c) For the Cr^{3+} - M^+ centers, since the M^+ ion is in the nearest-neighboring site, the size and nature of M^+ ion can influence the displacements Δx_1 and Δx_2 (and hence the EPR parameters). This point agrees with our calculations (see Table 2).
- d) The effective charge $(\approx -2e)$ of V_B is larger than that $(\approx -e)$ of M^+ in the B^{2+} site. Thus it can be expected that the displacements Δx_1 and Δx_2 in Cr^{3+} - V_B - M^{3+} centers are larger than those in Cr^{3+} -
- $\rm M^+$ centers. Our calculated results for CsMgBr₃:Cr³⁺ and CsCdBr₃:Cr³⁺ (see Table 2) support the expectation. However, for CsMgCl₃:Cr³⁺, the calculated Δx_2 in Cr³⁺-V_B-M³⁺ centers are smaller than those in Cr³⁺-M⁺ centers. The reason is not known (it may, in our opinion, be due to the repulsive force caused by the overlap of electronic clouds, because the M⁺-Cl⁻ distances are smaller) and remains an open question.
- G. L. Mcpherson, T. J. Kistenmacher, and G. D. Stucky, J. Chem. Phys. **52**, 815 (1970).
- [2] G. L. Mcpherson, A. M. Mcpherson, and J. L. Atwood, J. Phys. Chem. Solids 41, 495 (1980).
- [3] G.L. Mcpherson and K.O. Devaney, J. Phys. C13, 1735 (1980).
- [4] W. C. Zheng, Physica B245, 119 (1998).
- [5] W. C. Zheng, H. N. Dong, S. Tang, and J. Zi, Z. Naturforsch. 59a, 100 (2004).
- [6] V. K. Jain and V. Kapoor, J. Chem. Phys. 97, 4571 (1992).
- [7] V. K. Jain, Z. Naturforsch. 58a, 677 (2003).
- [8] G. L. Mcpherson, R. C. Koch, and G. D. Stucky, J. Chem. Phys. 60, 1424 (1974).
- [9] J. S. Griffith, The Theory of Transition-metal Ions, Cambridge University Press, London 1964.
- [10] J. J. Chem, M. L. Du, and J. Qin, Phys. Status Solidi B174, K15 (1992).

- [11] M. L. Du and C. Rudowicz, Phys. Rev. B46, 8974 (1992).
- [12] R. M. Macfarlane, Phys. Rev. B1, 989 (1970).
- [13] E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys. 47, 1300 (1967).
- [14] E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).
- [15] G. L. Mcpherson, A. M. Mcpherson, and W. Loong, J. Am. Chem. Soc. 106, 324 (1984).
- [16] J. D. Newman and B. Ng, Rep. Prog. Phys. 52, 699 (1989).
- [17] W. L. Yu, X. M. Zhang, L. X. Yang, and B. Q. Zen, Phys. Rev. B50, 6756 (1994).
- [18] X. X. Wu, W. C. Zheng, and S. Tang, Z. Naturforsch. 59a, 47 (2004).
- [19] J. D. Newman, D. C. Pryce, and W. A. Runcimann, Am. Mineral. 63, 1278 (1978).
- [20] C. Rudowicz and Y. Y. Zhou, J. Magn. Magn. Mater. 111, 153 (1992).